Wrapping Effects within a Proposed Function-Rescue Strategy for the Y220C Oncogenic Mutation of Protein p53
نویسندگان
چکیده
Soluble proteins must protect their structural integrity from water attack by wrapping interactions which imply the clustering of nonpolar residues around the backbone hydrogen bonds. Thus, poorly wrapped hydrogen bonds constitute defects which have been identified as promoters of protein associations since they favor the removal of hydrating molecules. More specifically, a recent study of our group has shown that wrapping interactions allow the successful identification of protein binding hot spots. Additionally, we have also shown that drugs disruptive of protein-protein interfaces tend to mimic the wrapping behavior of the protein they replace. Within this context, in this work we study wrapping three body interactions related to the oncogenic Y220C mutation of the tumor suppressor protein p53. Our computational results rationalize the oncogenic nature of the Y220C mutation, explain the binding of a drug-like molecule already designed to restore the function of p53 and provide clues to help improve this function-rescue strategy and to apply in other drug design or re-engineering techniques.
منابع مشابه
Harnessing Fluorine–Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs
Many oncogenic mutants of the tumor suppressor p53 are conformationally unstable, including the frequently occurring Y220C mutant. We have previously developed several small-molecule stabilizers of this mutant. One of these molecules, PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine, binds to a mutation-induced surface crevice with a KD = 150 μM, thereby increasing the melting tempe...
متن کاملStudy of pH influence on the stability of 175th codon of P53 genes by computational and modeling methods
P53 tumor suppressor gene, also known as “genome guardian” is mutated in more than half of allkind of cancers. In this study we have investigated the controls of environmental pH for P53 genemutation in point of specific sequence which is prone to mutagenesis. The most probable cancerousmutations occur as point mutations in exons 5-8 of P53 gene. The 175th codon of P53 is the thirdmost mutated ...
متن کاملHalogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53
The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substitu...
متن کاملFirst-order rate-determining aggregation mechanism of p53 and its implications.
Aggregation of p53 is initiated by first-order processes that generate an aggregation-prone state with parallel pathways of major or partial unfolding. Here, we elaborate the mechanism and explore its consequences, beginning with the core domain and extending to the full-length p53 mutant Y220C. Production of large light-scattering particles was slower than formation of the Thioflavin T-binding...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013